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The relation between the nature of the phase diagram and the pair potential is investigated on
the basis of a recently introduced van der Waals theory. Both simple fluids and colloidal dispersions
that admit a simple fluid description are considered. A necessary and sufficient condition for the
occurrence of a liquid phase is formulated and studied for four specific cases. The results compare

favorably with data obtained from other sources.
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I. INTRODUCTION

The relation between the phase diagram and the nature
of the interparticle forces is the central theme of equilib-
rium statistical mechanics [1-3]. When the particles are
spherical atoms interacting with pairwise additive cen-
tral forces, this relation is fairly well understood [4,5].
Recent advances in the study of colloidal dispersions sug-
gest that most of this knowledge can be applied to the
study of colloidal dispersions by exploiting the analogy
between a spherical colloidal particle and an atom [6-9].
Because of the complexity, compared to the atomic sys-
tems, of natural colloids, the use of this analogy usually
requires consideration of carefully prepared monodisperse
suspensions of synthetic spherical colloidal particles [10].
Henceforth we will consider only dispersions for which
this analogy can be expected to hold and describe them
as a simple fluid of colloidal particles. Even so, some im-
portant differences will remain because of the dramatic
change in length scale and because the forces between the
colloidal particles are mediated by the solvent and hence
depend on the thermodynamic state of the suspension
medium.

The interplay between the repulsive and attractive
parts of the pair potential was already the central theme
of the van der Waals theory for the equation of state of
simple fluids [4,5]. Recently, a proposal has been made to
extend this theory to the solid phase [11]. This is essen-
tial for the discussion of phase diagrams where the dense
fluid phases always enter into competition with the solid
phases. Although the combined van der Waals theory
for the fluid and the solid phases used here is very simple
and approximate, it is nevertheless sufficiently flexible to
capture the essential features of the problem. For con-
venience, we first slightly rephrase and summarize the
theory of [11] in Sec. II. Next we review its predictions
for the particular case of purely hard-sphere interactions
in Sec. III. In Sec. IV we formulate a necessary and
sufficient condition for the attractive forces that guaran-
tees the presence of a liquid phase in the phase diagram.
This condition is analyzed for four specific cases in Sec.
V and the results are compared with data available from
other sources. Our conclusions are gathered in the final

Sec. VL.
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II. THE van der WAALS APPROXIMATION

We consider a (atomic or colloidal) simple fluid com-
posed of N spherical particles enclosed in a volume V at
the equilibrium temperature T and interacting via a pair
potential V(r) consisting of a hard-sphere (HS) repulsion
and an as yet arbitrary attraction (A),

V(r) = Vus(r) + Va(r) , (2.1)
with
Vars(r) = {‘?." rsor Val = {—6¢0(1) P2

where r is the center-to-center distance, o the HS diam-
eter, and € the amplitude of the attractions described
by the dimensionless potential ¢(x) > 0, with z = L.
Within the van der Waals (vdW) approximation, the
(Helmholtz) free energy F' of this system can be writ-
ten (see [11]), similarly to (2.1), as the superposition of
a repulsive (HS) and attractive (A) contribution:

F(N,V,T) = Fgs(N,V,T) + Fo(N,V,T), (2.2)

where Fyg is the free energy of the HS system and Fs
represents the “cohesion energy” due to the attractions.
In agreement with [11], we will approximate Fyg in terms

of the free energy of an ideal system, say, F;q(N,V,T),
as
Fus(N,V,T) = Fiq(N,aV,T)
3
— NksT {111 (&) - 1}
a

= id(N7 V, T) - NkBTlna

= Fiq(N,V,T) + Fi§s(N,V,T) , (2.3)
where kp is Boltzmann’s constant, A = h the

(27rmkgT)%
thermal de Broglie wavelength, p = % the number den-
sity, and a = a(p) the fraction of the total volume V
that is freely accessible to the hard spheres, i.e., aV is
the “free” volume and (1 — &)V the “excluded” volume
or co-volume. Moreover, for F4 we write

Fa(N,V,T) / drVa(r)p(r) ,

(2.4)
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where p(r) is the distribution of sites in the phase under
consideration (see [11]). Note that by combining (2.2)
and (2.4) we have F,, = F— F;y = F§% + F4, so that the
excess (ex) free energy Fe, consists of an excess energy
(E) term entirely due to the attractions, Fy = ES®, while
the excess entropy (S) term originates entirely from the
HS potential, Fg%s = —TS§s, or F.p = ES® — T S§fs.
For a fluid phase (F) we have, according to [11], o =
1- fo—) and p(r) = p, yielding for the reduced free energy

per particle F(—Aj\’,}:—’a = f(p,T)
fr(p,T) = tln(pA3) — 1] — tIn(1 — p—‘;)

—2mpo /°° drz*¢(z) (2.5)

where t = '—"%1: is the reduced temperature and pg is the
maximum density for which the fluid phase can exist (see
[11] and Sec. III below).

For a (crystalline) solid phase (S) of lattice sites {r;}
we have, according to [11], a = [1 — (ﬁ):%]a and p(r) =
22, 6(r — r;), yielding within the nearest neighbor ap-
proximation [11]

1

f5(p,T) = tlln(pA®) — 1] — t1n {1 - (_&) }

Pcp
ny Pc :
(7))

where p.p, is the maximum density for which the solid
phase can exist, i.e., the density at (crystal) close packing
(cp), while n; is the number of nearest neighbors or the
coordination number of the given crystal structure.

For the study of the phase diagram we also need to
know the pressure p and the chemical potential u. These
are given in terms of f by the usual thermodynamic re-
lations

(2.6)

20f

F)
A 66—p(pf)-

Using (2.5) and (2.6) we obtain for the pressure in the
fluid phase [12]

PF = €p { 1 _t & — 2mpo’ /100 df’«‘xz“éa—p[mf’(x)]} (2.8)

Po

and in the solid phase [12]

i) )

(2.9)

while the chemical potential can be obtained from [cf.

(2.7)]

p=cef + (2.10)

RSN

using (2.5)—(2.9).

III. THE HARD-SPHERE TRANSITION

It is well known from simulations [13], theory [14], and
experiments with HS colloids [15] that a system of HS
does exhibit an order-disorder transition between a fluid
phase (F') and a crystalline solid (S). It is thus natural
to inquire, first of all, how well the vdW theory for the
F and S phases put forward in Sec. II can describe this
transition. In the particular case of a purely HS system,
i.e., ¢(z) = 0, the free-energy difference between a phase
(1) = (F or S) and a phase (2) = (F or S) is seen
from (2.5) and (2.6) to be determined by the ratio of
their free volumes V(3) = a(;)V and V(3) = )V, with
arF)=(1-£)and a5y = [1 - (t)%]s, according to

o
fay(p, T) — f2)(p,T) = tln e
(1)

so that phase (1) will be the stable phase (for all T'), i.e.,
fay < f) for all values of p for which phase (1) has
the largest free volume, i.e., a(1)(p) > a(z)(p). Hence,
within a HS system no fluid (F;)-fluid (F3,) transition can
occur because all fluid phases of the same density will
have the same free volume, i.e., pf()l) = pg,z). Similarly,
no solid (S1)-solid (S2) transition can occur because if

Pz)=0 (3.1)

aq) > a), i.e, p,(;,l,) > p,(;f,), for one density then this will
remain so for all densities. Hence, the stable S phase is
always the one with the largest possible p., value. This
corresponds to any compact crystal structure for which
we have

T
pcpa'3 = \/57 ¢cp = m )
where ¢ = %pa3 denotes the corresponding HS pack-
ing or volume fraction. Moreover, for low densities we
have a(py > oys), whereas for high densities we have
a(s) > a(r), whatever the value of po < pcp. The present
vdW theory predicts hence always a F-S transition en-
tropically driven by free-volume considerations. This sce-
nario is in qualitative agreement with the experimental
observations of a HS-transition between a fluid phase and
a compact crystal composed of a random stacking of com-
pact lattice planes [15].

Within the present vdW theory the precise location
of the HS F-S transition is monitored by the value of
% = fT':’ ¢o being the largest value of the packing
fraction ¢ for which the fluid phase can exist. In many
approximate theories, e.g., the Percus-Yevick theory [4],
one has that ¢ equals one. This, however, is unphysical,
since spheres are not space filling. Physically, the value
of ¢y is certainly bounded from above by ¢., of (3.2). At
the other extreme, ¢ will also be bounded from below
by %, which is the value of ¢ for which the low density
(second order) virial expansion is recovered from (2.8).
Hence, physically, i < ¢ < ¢cp, and as a rule of thumb
we will henceforth put ¢o equal to

(3.2)

b0 = 2(dep + 1) = 0.4952..., (3.3)

i.e., the HS fluid will become unstable halfway between
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the lower and upper-bound value of ¢. Physically, (3.3)
is acceptable because ¢o is expected to lie well below
the value of ¢ corresponding to a random close packed
(rcp) configuration, ¢cp, =~ 0.64, which corresponds to
the upper limit of stability of the HS glass (G) phase
[16]. Although the G phase is not strictly speaking an
equilibrium phase, it can be incorporated into the present
vdW theory by adopting the following value for its free
volume [16]:

p
a = 11—

Since prep < Pep, We have, a(sy > oyq), so that the glass
phase is always metastable compared to the solid phase,
but since pg < prcp, We find that for high enough densities
the glass phase can become stable compared to the fluid
phase, i.e., o(g) > a(r) (see Fig. 1). The F-S exchange
of stability will occur [see (3.1)] when o(ry = a(s) and,
similarly, c(r) = a(q) for the F-G exchange of stability.
Using the above expressions, we find for the values of ¢,
say, ¢p.s or ¢r.g, for which the F-S or F-G exchange
of stability occurs,

=

3
™
] y brep = _603,),@ ~ 0.64.

(3.4)

3

1
[12(%7) -3 -3

OF.5(G) = P(r)ep (3.5)

$(r)e
2(Fgee - 1)

FIG. 1. The reduced (8 = 3.7 ) Helmholtz free energy (F)
per particle versus the number density p or packing fraction
¢ = %a3p for hard spheres of diameter o as obtained from the
present van der Waals theory. Only the high-density region
is shown for the fluid (F), glass (G), and solid (S) phases.
The full lines correspond to the stable phases (lowest free en-
ergy), while the dashed lines indicate the metastable F and S
phases. The G phase (dashed-dot curve) is always metastable
relative to the S phase. If the S phase is suppressed (by-
passed), the G phase is seen to become stable relative to the
F phase for ¢ > 0.4950, whereas the F-S exchange of stability
corresponds to ¢ = 0.4942.

Adopting (3.3), we find from (3.5) ¢p.s ~ 0.4942 and
¢r.¢ ~ 0.4950. The sequence ¢p.s < ¢p.g, i.e., the S
phase becoming stable before the G phase, is again in
qualitative agreement [17] with the findings of [15,16].

Notice that in [11] we did use ¢ = 0.5157 instead
of (3.3). This value of ¢ was found by adjusting the
vdW value of ¢p.s given by (3.5) to the value of ¢p. s
found in the theory of Lutsko and Baus (see [14]), namely,
¢r.s = 0.515. Here we prefer to use (3.3) because it keeps
the present vdW-theory self-contained, whereas the pre-
sentation of [11] relied on the extraneous and much more
sophisticated theory of Lutsko and Baus [14]. In Fig. 2
we show how the HS F-S coexistence densities, obtained
by solving P(F) = DP(S) and H(F) = K(S) (see Sec. II),
depend on the value of ¢g. It is seen there that the dif-
ference of ¢¢ value between (3.3) and ¢o = 0.5157 as used
in [11] has only a minor effect on the F-S coexistence.
In either case, we find that the experimental coexistence
region corresponding to ¢r = 0.494 and ¢s = 0.545 is
contained within the vdW prediction but that the latter
is too large due to an overestimation of ¢s by about 8%
while the value of ¢r is underestimated by about 2%.
On this basis one can expect that the predictions of the
present vdW theory will be quantitatively superior on
the fluid side of the F-S transition, whereas the solid
side may indeed involve appreciable overestimations. We
will nevertheless continue to use (3.3), since it yields a
simple and self-contained vdW theory for the HS transi-
tion that is in full qualitative and even semi-quantitative
agreement with the findings of [13-15].

0.640-
0.626

0.4974
0.4754

0.4952 q) 0.5157
0

FIG. 2. The packing fraction ¢ of the fluid (F) and solid
(S) phases of a hard-sphere system at F-S coexistence ver-
sus the packing fraction ¢o at which the F phase becomes
unstable in the present van der Waals theory. The dots cor-
respond to the value (0.4952) of ¢o used here [see (3.3)] and
the value (0.5157) of ¢ used in [11]. The arrows indicate the
corresponding experimental values (¢r = 0.494; s = 0.545)
of [13,15]. It is seen that while ¢ is fairly well reproduced,
the value of ¢s is overestimated here by 8%.



52 MAKING A (COLLOIDAL) LIQUID: A van der WAALS APPROACH 865

IV. WHAT DOES IT TAKE TO MAKE A LIQUID?

In the presence of attractions, i.e., when ¢(z) # 0, the
vdW free energies are not always monotonic and may
exhibit a vdW loop for temperatures below some critical
temperature as discussed within the present context in
[11] for both the F and the S phases.

Here we will focus our attention on the critical point of
the F' phase only (see [11] for the S phase). The critical

temperature TC(F) and the critical density ng) of the F
phase can be found by solving the equations

7] 82
9 (o) TENY — 0. 9 () FE) — _
6ppF(pc 't ) ’ 8p2pF(pc ’Tc ) 0 (4 1)

or similar equations in terms of pp (cf. g?-; = pg—’;), where
pr(p,T) and pr(p,T) denote the pressure and chemical
potential of the F' phase. Using, for instance, the simple
expressions of Sec. II, one finds (see also [11])

8

=T (4.2)

o Loy P

(F)
where ¢£F) = 103P£F), ) = k—’g—f‘"— denote the critical

values of the packing fraction and reduced temperature,
whereas I is given by

T = 1240 / ~ dea(2) (4.3)
1

at least for the case where ¢(z) does not depend on the

density [12]. Hence, for T' < TF) the F phase will phase
separate into a dilute fluid phase (F}) or gas character-

ized by ¢ values smaller than ¢£F) and a dense fluid phase

(F2) or liquid with ¢ values larger than ¢£F). The pres-
ence of attractions, ¢(z) # 0 or, better, I" # 0, is there-
fore a necessary condition for a liquid phase (F3) to ap-
pear. It is, however, not a sufficient condition because
this liquid could still be metastable with respect to the
S phase, since the F-S transition does not even require
attractions to be present (see Sec. III). In other words,
the F;-F, transition can still be preempted by the F-S
transition. Let, therefore, pp(T") denote the density of
the F' phase which, at a temperature T', coexists with
the S phase of density ps(T'). The necessary and suffi-
cient condition for a stable liquid phase to appear in the
phase diagram is then (see Fig.3)
o) < pr(TP) (4.4)
where p{) and TSF) are given by (4.1) or (4.2) and pp(T)
and ps(T) by
(4.5)

pr(pr,T) = ps(ps,T), wr(pr,T)=us(ps,T),

where pp(s) and pp(s) denote, respectively, the pressure
and chemical potential of the F'(S) phase (see Sec. II).
Equation (4.4) states that the critical density of the fluid
has to be smaller than the density of the fluid, which,
at the critical temperature TC(F), coexists with the solid.
That Eq. (4.4) implies a condition on the potential can

0.8
t F S
0.6"‘ s
/// \\\
E// \\ F2
/ \
/ \
044/ \\\
] \
\
\
\
\
\
%25 0.2 0% 0.6
FIG. 3. The fluid (F;)-fluid (F2) coexistence (dashed

curve) and the fluid (F)-solid (S) coexistence (full curves)
in the temperature (t = 227) density (¢ = Zo°p) plane for a
subcritical potential. For such a potential the density of the
fluid (F) that coexists with the solid (S) at the Fy-F; criti-
cal temperature (open dots) is larger than the critical density
(full dot) [cf. (4.4)]. This corresponds to a situation where
the dense fluid (F2) or liquid is stable relative to the F-S
transition. The case shown here corresponds to the results
of the present vdW theory for inverse-power attractions [see
(5.1)] of index n = 6.

be seen by considering the limiting case ng) — pF (TC(F))
determined by

pr(pt"), T)) = ps(ps, T{F),
ur (e, T = ps(ps, TF)

which constitute a set of two equations for only one un-

(4.6)

0.8

0.6 1

0.4 1

) 1
0.4 q) 0.6

FIG. 4. The same as Fig. 3 but for a critical potential,
i.e., a potential for which the (F;-F;) critical fluid satisfies,
moreover, the F-S coexistence. This corresponds to a sit-
uation where the dense (F2) fluid or liquid phase becomes
marginally stable relative to the F-S transition. The case
shown here corresponds to the results of the present vdW the-
ory for an inverse-power attraction [see (5.1)] with the critical
index n = n{f) ~ 7.6 [cf. (5.2)].
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FIG. 5. The same as Fig. 3 but for a supercritical potential,
i.e., one for which the (F;-F:) critical density exceeds the
density of the fluid (F) that coexists with the solid (S) at
the (Fi-F3) critical temperature. In this case the dense (F3)
fluid or liquid phase is always metastable relative to the F-S
transition. The case shown here corresponds to the results of
the present vdW theory for an inverse-power attraction (5.1)
of index n = 9, as suitable for fullerene molecules (see [19]).

known, namely, ps(Tc(F)). Eliminating (formally) ps
from (4.6), there remains a relation to be satisfied by the
pair potential. This relation states then that the F}-F,
critical point satisfies the F-S coexistence. Henceforth
we will call any potential that satisfies (4.6) a “critical
potential” with respect to the critical point of the fluid
phase (see Fig. 4). A potential for which (4.4) holds
will likewise be called a “subcritical potential,” whereas
a "supercritical potential” is one for which (see Fig. 5)

pr(TED) < piF) (4.7)

holds. The necessary and sufficient condition for a given
potential to give rise to a (stable) liquid is hence that it
be subcritical.

V. FOUR CASE STUDIES

We will now analyze the condition (4.6) within the
vdW theory of Sec. II for a few specific cases.

A. Inverse-power potentials

Let us first reconsider the case of the inverse-power
(IP) attractions already considered in [11]. For this case
we have

1

zn’ r=

¢(z) =
when adopting the amplitude of the attractions as tem-
perature scale and the HS diameter o as length scale [see
(2.1)]. This family of potentials hence depends on a sin-
gle parameter, the index n, which fixes its rate of decay.
For n large (small) one usually speaks of a short (long)

g (5.1)

ranged potential, although (5.1) is, strictly speaking, of
infinite range for all n. Substituting (5.1) into (4.3) we
findT' = 12(-11%, provided n > 3. In [11] we constructed

the phase diagrams for (5.1) and found empirically that
a topological change did occur in the phase diagram for
7 < n < 8. Here we use (5.1) in (4.6), which now becomes
an equation for n (and ps) and find, but now with much
less labor, that the critical IP-potential corresponds to

n= nﬁF) with

n) ~ 176, (5.2)

while for n < ngF) the IP potentials are subcritical.
The necessary and sufficient condition to obtain a lig-
uid phase with an IP attraction is therefore 3 < n < 7.6.
This is consistent with the current observation [2] that
atomic systems with nonretarded (n = 6) or retarded
(n = 7) London-vdW dispersion forces [3] do exhibit
a liquid phase. In the case of molecular systems of
the fullerene type (e.g., Cgo) the atoms making up the
fullerene molecule can be considered to be uniformly dis-
tributed over the surface of a sphere (at least for tempera-
tures for which the molecules can freely rotate) and sum-
ming the London-vdW attractions between the atoms
over the spherical surfaces leads then to an intermolecu-
lar potential of Girifalco type [18], which can, itself, be
approximated by an IP attraction (5.1) with n ~ 9 (see,
e.g., [19]). Since 9 > n{) we then conclude, in agree-
ment with [20], that the fullerenes should not exhibit a
liquid phase, although this is still a somewhat controver-
sial matter (see [21]).

B. Yukawa potentials

A potential that by itself may not be very realistic but
is often used to fit more realistic potentials (see, e.g.,
[22]) or to perform simulation studies (see, e.g., [23]) is
the Yukawa potential:

e—-;c(:v—l)

¢(J}) =

- (5.3)

which, just like (5.1), depends on a single parameter, &,
controlling its decay rate. Substituting (5.3) into (4.3)
yields T' = 12¢y (":,1), provided k > 0. Equation (4.6)
becomes now an equation for £ (and pg) that defines the
critical Yukawa potential as corresponding to kK = n,(:F),
with

kF)~52, (5.4)

so that the phase diagram of (5.3) will exhibit a liquid
phase for 0 < k < 5.2. This is consistent with the simula-
tions of [23] where a liquid was found for ¥ = 3.9 but not
for kK = 7 and k = 9. Similarly, in our previous theoreti-
cal study [22] based on a variational approach, we found a
liquid phase for k = 2.7 but not for k = 14 and 398, again
in agreement with (5.4). This should be contrasted with
the recent much more sophisticated theoretical study of
[24] and the mixed theory-simulation results of [23], both
of which still predict a liquid for k = 7.
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C. The Hamaker-vdW potential

Dispersions of spherical mesoscopic objects can often
be described as simple fluids of colloidal particles (see
[7-10]). In this case the sum over the London-vdW at-
tractions between atoms distributed uniformly over the
volume of a sphere leads to the following Hamaker-vdW
potential between the colloidal particles [3,7,8,10]:

B(@) = Th(yz) (55)

h(z) = (5.6)

1 1 1 1
m2—1+§+2 n 1_F ’
while the Hamaker constant A of (5.5) can usually be
approximated by

é =m(l+1), (5.7)
with m a dimensionless measure (m > 0) of the differ-
ence (mismatch) in refractive index between the material
making up the colloidal particle and the material making
up the solvent, and t = E‘zl the dimensionless temper-
ature resulting from choosing the energy scale € to be
proportional to the main ultraviolet electronic absorp-
tion frequency (see [7,8] for details). The dispersion can
then be stabilized against the flocculation induced by the
singularity of h(z) of (5.6) when z — 1 by using a steric
stabilization mechanism which will lead to an effective
HS diameter o somewhat larger than the Hamaker-vdW
diameter, say, op, of the colloidal particle and, hence,
Y= & >1in (5.5).

The resulting potential (5.5-5.7) depends now on two
dimensionless parameters, m and . Because of the tem-
perature dependence of the Hamaker constant (5.7), we
have, for (4.3), T = (1 4 t)T, with

oo
I'= 12m¢0/ dzz’h(yz)
1

= mao [2111 (z—:) —8y—873ln (1 - %)] , (5.8)

while (4.2) becomes:

w1 ) 8 &
== — = 5.9
¢c 3¢05 1 +t£F) 27 ( )
or
-
(*) - 270 (5.10)

R I
so that the two parameters m and v must satisfy the

additional relation (tS;F) > 0)

v—1 3 1 27
2ln(X—) -8y—-8yIn(1- = , (5.11
n(7+1) T n( 72)<8m¢>o (5.11)

which implies that for a given m, v must be large enough

to prevent flocculation. We have performed only a lim-
ited search but could find no solution to (4.6) for (5.5)
with physical values of m and «. This seems to imply
that the present potential is always subcritical or, more
precisely, if the system does not flocculate it will always

admit a liquid phase for ¢t < tgF).

D. The depletion potential

When the colloidal dispersion is index matched [i.e.,
m = 0 in (5.7)] we can neglect the Hamaker-vdW at-
tractions and the (uncharged) colloidal particles will be-
have essentially (see [7-10]) as the HS system of Sec. III.
Assume now that we add to such a HS colloid a poly-
mer that does not adsorb onto the colloidal particles.
To a first approximation we can assimilate the polymer
molecules to spherical particles with a diameter, say, op,
equal to the radius of gyration of the polymer. When
this effective diameter o}, of the polymer is much smaller
than the diameter o of the colloidal particles we may
invoke the depletion picture [7,8,10,25]. In this picture
the (colloid + polymer) mixture is described as an ef-
fective one-component system of colloidal HS interacting
moreover with an effective, polymer induced, attraction.
The interest of this situation stems from the fact that
it provides us with an experimentally realizable system
for which the attractions can be tuned by changing the
length and/or concentration of the polymer for a given
HS colloid [7,8,10]. Indeed, when the depletion picture
holds, the effective attraction between the colloidal HS
particles reads (7,8,10]

ble) = LT 2 (14 &)% (i) ,

: T+ ¢ (5.12)

where ¢ = 5;1 is the polymer to colloid diameter ratio,

w (ng) is the normalized overlap volume of two deple-
tion spheres,

1—3z4+ 123 =z<1
— 2 2 ) >
w(zx) { 0, s> 1, (5.13)
and II, is the (osmotic) pressure of the polymer in the
given colloidal dispersion. As our energy scale € we will
take

T
_ * 7 3
G—IIPGUP y

(5.14)
where II} is the (osmotic) pressure of the polymer in the
absence of colloidal particles, a variable that can be easily
controlled experimentally. In many instances it has been
assumed (see [7,8,10,26]) that van’t Hoff’s ideal gas law,
Iy = ppkpT and II, = ppkpT, holds well for polymers
in solvents close to their theta point. In this case the
reduced temperature becomes [see (5.14)]

kBT_l
€ d);’

so that the control parameter of the phase transition is
no longer the temperature but the polymer concentration

t= (5.15)



868 TAMARA COUSSAERT AND MARC BAUS 52

pp or polymer volume fraction ¢y, = %a;’p;. In the spirit
of this simple vdW theory we can relate p, to pj by an
excluded volume argument,

P+ 63

where ¢(1 + £€)® = Zp(o + 0,)% is the fraction of the
volume excluded to the polymer because of the presence
of a depletion sphere of volume % (o + 0,)% around each
colloidal particle. From (5.16) it follows that the concen-
tration p, or volume fraction ¢, = % gpp of the polymer
in the presence of the colloidal particles depends on the
amount of polymer added (¢;) and on the amount of
colloid present (¢). As already observed elsewhere (see
Lekkerkerker et al. [26]), this implies that any phase sep-
aration of the colloid will induce a partitioning of the
polymer between the coexisting phases.

Returning to (4.1), we note that because of (5.16), ¢(x)
now becomes density dependent so that (4.2) and (4.3)
no longer hold [12]. We can, however, still solve (4.1)
exactly, yielding now for the critical point

(5.16)

g = % o 8 T
¢ 3—24o(1+¢)3 ¢ 271 — ¢o(1+€)3] °
(5.17)
with T' given by
- 146)3 [
L= 12¢0(é.—3)£ dez’w (1:‘_ )
= -2%05{(1 +6)°5—8(1+86)°%+9(1+6)2%2-2} (5.18)
and T' > 0 for & > 0. Since we must have ¢£F) > 0,

£F) > 0, Eq. (5.17) implies, moreover, that £ < 0.264.

The present theory is therefore limited to 0 < £ < 0.264,
which is consistent with the fact that the original deple-
tion picture assumes { <« 1. Turning now to (4.6) we
find that the depletion potential (5.12)—(5.16) becomes

critical for a size ratio & = 5§F), with

¢ ~0.262 (5.19)

so that for t < ) or, better, for ¢; > ’t(‘lﬁ, the

presence of polymer will induce a liquid phasé when-
ever 0.262 < £ < 0.264. The depletion potential is
thus almost always supercritical. Note, however, that
the very small region where the potential is subcritical
(0.262 < £ < 0.264) may result from the rough approxi-
mation used in (5.16). Using more elaborate expressions
for (5.16), one will, however, lose the simplicity of the
present vdW theory, since the critical point (4.1) can

then no longer be obtained in analytic form as in (5.17).
In the related theoretical studies of [26], it was found

that £ ~ 0.32, while the simulations of [27] did pre-

dict the still higher value .{,EF) ~ 0.45. In the experiments
reported in [28] one did find no liquid for £ = 0.08, while
a liquid was found for £ = 0.24 and 0.57, with £ = 0.24
being very close to, but slightly larger than, géF).

When the depletion picture is applied to a binary mix-
ture of very dissimilar HS colloids, as already done in
[29], then the same critical value (5.19) will be found
because the fact that the small colloid no longer obeys
van’t Hoff’s ideal gas law will affect only the temperature
scale. In view of this, the experimental results of [30] for
& < 0.2 could well have to be reinterpreted in terms of a
F-S coexistence, since for such a small ¢ value the lat-
ter will preempt the F;-F5 transition predicted in [31].
To close, we would like to emphasize here that it would
be very interesting to investigate, perhaps following the
lines of [32], at what £ value the effective one-component
description based on the depletion picture breaks down
and one has to use a genuine two-component description
to study this type of (colloid + polymer) or (colloid +
colloid) mixture.

VI. CONCLUSIONS

We have formulated a necessary and sufficient condi-
tion for the occurence of a liquid phase in the phase dia-
gram of a simple fluid (see Sec. IV). Within the vdW the-
ory of [11], summarized in Sec. II, this condition can be
easily analyzed. Before doing so, we have shown in Sec.
III that the HS theory underlying the present vdW the-
ory is consistent with all the known facts. In Sec. V we
have established on this basis the condition for the occur-
rence of a liquid phase in systems governed by four spe-
cific potentials of increasing complexity. In each case we
have found a quantitative agreement between the results
of this simple vdW theory and data from other sources.
From this we conclude that although the present vdW
theory is too crude to answer quantitatively questions
of absolute stability of phases, it may well be reliable
for investigating questions of relative stability such as
the relative stability of the fluid (F})-fluid(F3) transition
with respect to the fluid (F')-solid(.S) transition that was
investigated here.
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